您的位置:首页  师资队伍  教师队伍  教师队伍

旷烨教授

工作单位:暨南大学环境与气候研究院

电话:

邮箱:kuangye@jnu.edu.cn

研究方向:

个人简介


2023.10起(破格晋升) 暨南大学环境与气候研究院,研究员。

2020.10– 2023.10   暨南大学环境与气候研究院,副研究员。

2017.08 - 2020.10   暨南大学环境与气候研究院,讲师。

2012.09 - 2017.07   北京大学物理学院大气与海洋科学系,理学博士。

2008.09 - 2012.07   北京大学物理学院大气与海洋科学系,理学学士。

 

ResearchIDYe Kuang - Web of Science Core Collection




研究方向



招生小贴士:欢迎联系加入RACE研究小组, 无论你的本科方向是水、土,还是其它方向,不用担心,我将为你创造学习编程、学习仪器研发、学习大气科学专业知识的良好环境,推动你从以“记”为主的学习方式向以“思考”为主的学习方式转变,助你毕业时既有“学问”,也有一技之长~

当然,如果你是大气科学相关的本科专业,我心欢喜~

如果你是环境与气候学院的本科生,恰好你也对大气科学、编程、仪器研发感兴趣,欢迎联系,我们或许可以一起做一些有趣的创造~

空气中的液滴,包括霾滴、云滴、雾滴、雨滴,是大气环境、天气气候过程的核心,而我的方向主要围绕空气中的液滴及其环境与气候效应展开。主要关心液滴的增长(吸湿增长、活化、碰并)及其大气化学(气溶胶多相化学,云雾化学)和辐射影响(气溶胶—辐射相互作用,气溶胶—云—辐射相互作用)。因此,我们研发仪器,观测霾聚霾散,追云逐雾,探索大自然中风起云涌、云卷云舒的奥秘~~~

具体研究方向介绍及相应论著:

一、加湿浊度计研发及应用

加湿浊度计是气溶胶吸湿性研究的主要手段之一,本人博士期间在赵春生教授的指导下完成了加湿浊度计的研发,实现了该仪器的商业化。目前仍然在围绕该仪器进行持续的研发工作,比如快速响应加湿系统的完全自主研发;我们在加湿浊度计的应用方面进行了很多开创性的尝试,取得了系列成果。

Kuang, Y., Zhao, C. S., Ma, N., Liu, H. J., Bian, Y. X., Tao, J. C., and Hu, M.: Deliquescent phenomena of ambient aerosols on the North China Plain, Geophys. Res. Lett., 8744-8750, 10.1002/2016GL070273, 2016

首次基于自主研发的加湿浊度计观测报道了华北平原环境气溶胶的潮解现象,后被多种外场观测手段所证实,明确阐述了环境气溶胶相态的复杂性。

Kuang, Y., Zhao, C., Tao, J., Bian, Y., Ma, N., and Zhao, G.: A novel method for deriving the aerosol hygroscopicity parameter based only on measurements from a humidified nephelometer system, Atmos. Chem. Phys., 17, 6651-6662, 10.5194/ acp-17-6651-2017, 2017.

奠定了基于光学观测仪器/数据直接观测/反演气溶胶吸湿性的理论基础,该方法被国内外多个课题组使用,已被Nature GeoscienceGRL等多个杂志引用,用于印度地区基于能见度、PM2.5数据的吸湿性反演研究,证实了该地区的强气溶胶吸湿性。

Kuang, Y., Zhao, C. S., Zhao, G., Tao, J. C., Xu, W., Ma, N., and Bian, Y. X.: A novel method for calculating ambient aerosol liquid water content based on measurements of a humidified nephelometer system, Atmospheric Measurement Techniques, 11, 2967-2982, 10.5194/amt-11-2967-2018, 2018.

奠定了基于光学仪器观测气溶胶液态水含量的理论基础

现有气溶胶吸湿观测的实现方式基本是先干燥后加湿,而环境大气状态下气溶胶吸湿过程的直接测量非常困难,我们基于浊度计研发了“环境状态气溶胶吸湿过程动态观测系统”:

Qiao, H., Kuang, Y*.(通讯), Yuan, F., Liu, L.*, Zhai, M., Xu, H., Zou, Y., Deng, T., and Deng, X.: Unlocking the Mystery of Aerosol Phase Transitions Governed by Relative Humidity History Through an Advanced Outdoor Nephelometer System, Geophysical Research Letters, 51, e2023GL107179, https://doi.org/10.1029/2023GL107179, 2024.

揭示了环境气溶胶的结晶和潮解现象,指出即便相对湿度高达70%,完全潮解的亚稳态假设也未必成立。


这个方向最近有新的原理突破,但文章还在构思中,欢迎对辐射、光学、仪器制造、智能硬件感兴趣的同学加入我们~,我们不仅自己提出光学观测原理,也自己制造仪器。

二、有机气溶胶吸湿性

有机气溶胶吸湿性是气溶胶-水相互作用(含水量、活化)研究的主要挑战,我们发现基于自主研发的加湿浊度计系统有希望在这方面取得重要进展,目前已经取得阶段性成果。我们未来将通过对加湿浊度计的改造及与其它自主研发仪器的配合,实现气溶胶有机吸湿性的模式参数化,提升气溶胶多相反应、气溶胶直接辐射效应、间接辐射效应(活化过程)的模式模拟。

Kuang, Y*.; He, Y.; Xu, W.; Zhao, P.; Cheng, Y.; Zhao, G.; Tao, J.; Ma, N.; Su, H.; Zhang, Y.; Sun, J.; Cheng, P.; Yang, W.; Zhang, S.; Wu, C.; Sun, Y*.; Zhao, C., Distinct diurnal variation in organic aerosol hygroscopicity and its relationship with oxygenated organic aerosol. Atmos. Chem. Phys. 2020, 20, (2), 865-880.

基于光学吸湿性观测仪器和气溶胶化学组分观测的有机气溶胶吸湿性观测理论建构,明确了华北平原有机气溶胶氧化程度与有机气溶胶吸湿性的紧密联系。

Kuang, Y., Huang, S., Xue, B., Luo, B., Song, Q., Chen, W., Hu, W., Li, W., Zhao, P., Cai, M., Peng, Y., Qi, J., Li, T., Wang, S., Chen, D., Yue, D., Yuan, B., and Shao, M.: Contrasting effects of secondary organic aerosol formations on organic aerosol hygroscopicity, Atmos. Chem. Phys., 21, 10375-10391, 10.5194/acp-21-10375-2021, 2021.

明确阐明氧化程度不足以表征有机气溶胶吸湿性变化,建立有机气溶胶吸湿性与VOCs前体物以及SOA形成机制的联系是模式有机气溶胶吸湿性参数化的关键。

这个研究方向目前遇到了一些困难,陷入困境的原因是有机气溶胶-无机气溶胶的复杂相互作用,但是我们在努力坚持探索,期待柳岸花明~

三、能见度研究

能见度的显著提升是实现蓝天白云的核心要旨,厘清影响能见度的关键因素是能见度治理和预报的关键,能见度的监测是重要的气象要素,在机场航运等方面发挥关键作用。我们基于加湿浊度计系统观测在这方面取得了一些引领性成果。未来我们将使用最新研发的环境状态气溶胶散射吸湿增长因子测量系统,探索更可靠的能见度监测手段,研究能见度长期变化的关键影响因素。

Xu, W., Kuang, Y. (通讯), Bian, Y., Liu, L., Li, F., Wang, Y., Xue, B., Luo, B., Huang, S., Yuan, B., Zhao, P., and Shao, M.: Current Challenges in Visibility Improvement in Southern China, Environmental Science & Technology Letters, 10.1021/acs.estlett.0c00274, 2020.

首次报道了中国南方高湿地区能见度提升效果明显低于PM2.5质量浓度降低幅度,指出机气溶胶吸湿性及散射效率的准确表征是模式能见度预报的主要挑战之一。

Liu, L., Kuang, Y.*(通讯), Zhai, M., Xue, B., He, Y., Tao, J., Luo, B., Xu, W., Tao, J., Yin, C., Li, F., Xu, H., Deng, T., Deng, X., Tan, H., and Shao, M.: Strong light scattering of highly oxygenated organic aerosols impacts significantly on visibility degradation, Atmos. Chem. Phys., 22, 7713-7726, 10.5194/acp-22-7713-2022, 2022.

指出广州冬季高氧化态有机气溶胶在环境状态下的综合散射效率最强,强调了能见度预报和气溶胶直接辐射效应模拟中准确参数化二次有机气溶胶散射效率和吸湿性的重要性。

环境状态浊度计系统已经造好,在广州和北京同时布设观测,未来还会在更多站点布设仪器~

四、二次有机气溶胶形成机制

当前的排放背景下,二次有机气溶胶在细颗粒物中扮演了越来越重要的角色,建立“SOA形成机制-SOA辐射和吸湿增长特性”的直接联系,是PM2.5质量浓度控制、能见度提升和有机气溶胶气候效应研究的关键。该研究方向目前正在起步阶段。

Kuang, Y.; He, Y.; Xu, W*.; Yuan, B.; Zhang, G.; Ma, Z.; Wu, C.; Wang, C.; Wang, S.; Zhang, S.; Tao, J.; Ma, N.; Su, H.; Cheng, Y.; Shao, M.; Sun, Y*., Photochemical Aqueous-Phase Reactions Induce Rapid Daytime Formation of Oxygenated Organic Aerosol on the North China Plain. Environmental science & technology 2020.

首次基于外场观测明确指出高湿和雾条件下,光化学液相反应主导了华北平原二次有机气溶胶的形成,该机制正被越来越多的后续观测所证实。

Xu, W., Kuang, Y.(通讯), Liang, L., He, Y., Cheng, H., Bian, Y., Tao, J., Zhang, G., Zhao, P., Ma, N., Zhao, H., Zhou, G., Su, H., Cheng, Y., Xu, X., Shao, M., and Sun, Y.: Dust-Dominated Coarse Particles as a Medium for Rapid Secondary Organic and Inorganic Aerosol Formation in Highly Polluted Air, Environmental science & technology, 10.1021/acs.est.0c07243, 2020.

首次基于直接的外场观测证据指出,华北平原高湿条件下,Dust是二次有机和无机气溶胶生成的重要媒介。

Zhai, M.; Kuang, Y.*(通讯); Liu, L.*; He, Y.; Luo, B.; Xu, W.; Tao, J.; Zou, Y.; Li, F.; Yin, C.; Li, C.; Xu, H.; Deng, X., Insights into characteristics and formation mechanisms of secondary organic aerosols in the Guangzhou urban area. Atmos. Chem. Phys. 2023, 23, (9), 5119-5133.

当然,我们带着对珠三角二次有机气溶胶形成机制研究的好奇,也做了初步工作,表明光化学液相化学反应的重要性。

此外,我们还围绕地面露水过程对大气氧化性的影响开展了系列工作,比如:

Xu, W., Kuang, Y.*(通讯), Liu, C., Ma, Z., Zhang, X., Zhai, M., Zhang, G., Xu, W., Cheng, H., Liu, Y., Xue, B., Luo, B., Zhao, H., Ren, S., Liu, J., Tao, J., Zhou, G., Sun, Y., and Xu, X.: Severe photochemical pollution formation associated with strong HONO emissions from dew and guttation evaporation, Science of The Total Environment, 913, 169309, https://doi.org/10.1016/j.scitotenv.2023.169309, 2024.

这些基础理解将引领我们继续探索二次有机气溶胶形成机制及相应大气氧化性来源,等你来一起设计新的实验~



五、气溶胶—云相互作用(云雾物理和化学)

IPCC报告指出,气溶胶—云相互作用是气候变化评估的第一大误差来源。其实,气溶胶—云相互作用还是大气化学和天气研究的重要过程。气溶胶—云相互作用的核心,是气溶胶会通过微物理过程(活化等)影响云的形成和发展演变,而地球上90%以上的云不会形成降水,云雾多相化学过程会极大改变气溶胶的化学组分和物理化学特性。

该研究方向是非常初步的起步阶段,但是这个方向将会成为我的研究组未来最重要的研究方向。

我们在观测方法、仪器研发和机制机理等方面进行系列探索:

Tao, J.; Kuang, Y*(通讯).; Luo, B.; Liu, L.*; Xu, H.; Ma, N.; Liu, P.; Xue, B.; Zhai, M.; Xu, W.; Xu, W.; Sun, Y., Kinetic Limitations Affect Cloud Condensation Nuclei Activity Measurements Under Low Supersaturation. Geophysical Research Letters 2023, 50, (4), e2022GL101603.

CCNC观测方法修正

已经完成第一套气溶胶-云雾综合进样装置的研发。2021年,基于该装置在河北固城进行了为期一个半月的AQ-SOFAR (AQueous Secondary aerOsol formation in Fogs and Aerosols and their Radiative effects in the North China Plain)综合观测实验。2023年,基于该观测实验数据的科学探索才刚刚开始~

Kuang, Y., Xu, W., Tao, J., Luo, B., Liu, L., Xu, H., Xu, W., Xue, B., Zhai, M., Liu, P., and Sun, Y.: Divergent Impacts of Biomass Burning and Fossil Fuel Combustion Aerosols on Fog-Cloud Microphysics and Chemistry: Novel Insights From Advanced Aerosol-Fog Sampling, Geophysical Research Letters, 51, e2023GL107147, https://doi.org/10.1029/2023GL107147, 2024.

生物质和化石燃料燃烧气溶胶的不同云雾化学和云雾微物理影响


2021年秋季固城观测实验

 


荣誉奖励


2022年暨南大学番禺校区党员先锋模范岗

2022年暨南大学优秀专业型和学术型研究生导师

教育部2019年度高等学校科学研究优秀成果奖 - 自然科学奖二等奖(第4完成人) 

2017年北京大学优秀博士学位论文,北京大学优秀博士毕业生

  

  


学术论著


2024年:

[1]  Qiao, H.,Kuang, Y.*(通讯), Yuan, F., Liu, L.*, Zhai, M., Xu, H., Zou, Y., Deng, T., and Deng, X.: Unlocking the Mystery of Aerosol Phase Transitions Governed by Relative Humidity History Through an Advanced OutdoorNephelometer System, Geophysical Research Letters, 51, e2023GL107179, https://doi.org/10.1029/2023GL107179, 2024.

[2]  Kuang, Y., Xu, W., Tao, J., Luo, B., Liu, L., Xu, H., Xu, W., Xue, B., Zhai, M., Liu, P., and Sun, Y.: Divergent Impacts of Biomass Burning and Fossil Fuel Combustion Aerosols on Fog-Cloud Microphysics and Chemistry: Novel Insights From Advanced Aerosol-Fog Sampling, Geophysical Research Letters, 51, e2023GL107147, https://doi.org/10.1029/2023GL107147, 2024.

[3] Xu, W., Kuang, Y.* (通讯), Liu, C., Ma, Z., Zhang, X., Zhai, M., Zhang, G., Xu, W., Cheng, H., Liu, Y., Xue, B., Luo, B., Zhao, H., Ren, S., Liu, J., Tao, J., Zhou, G., Sun, Y., and Xu, X.: Severe photochemical pollution formation associated with strong HONO emissions from dew and guttation evaporation, Science of The Total Environment, 913, 169309, https://doi.org/10.1016/j.scitotenv.2023.169309, 2024.

2023

[1] Zhang, S.; Li, G.; Ma, N.; He, Y.; Zhu, S.; Pan, X.; Dong, W.; Zhang, Y.; Luo, Q.; Ditas, J.; Kuhn, U.; Zhang, Y.; Yuan, B.; Wang, Z.; Cheng, P.; Hong, J.; Tao, J.; Xu, W.; Kuang, Y.; Wang, Q.; Sun, Y.; Zhou, G.; Cheng, Y.; Su, H., Exploring HONO formation and its role in driving secondary pollutants formation during winter in the North China Plain. Journal of Environmental Sciences 2023, 132, 83-97.

 

[2] Li, F#.; Luo, B#.; Zhai, M.; Liu, L.; Zhao, G.; Xu, H.; Deng, T.; Deng, X.; Tan, H.; Kuang, Y.*(通讯); Zhao, J.*, Black carbon content of traffic emissions significantly impacts black carbon mass size distributions and mixing states. Atmos. Chem. Phys. 2023, 23, (11), 6545-6558.

 

[3] Hong, J.; Tang, M.; Wang, Q.; Ma, N.; Zhu, S.; Zhang, S.; Pan, X.; Xie, L.; Li, G.; Kuhn, U.; Yan, C.; Tao, J.; Kuang, Y.; He, Y.; Xu, W.; Cai, R.; Zhou, Y.; Wang, Z.; Zhou, G.; Yuan, B.; Cheng, Y.; Su, H., Measurement Report: Wintertime new particle formation in the rural area of the North China Plain – influencing factors and possible formation mechanism. Atmos. Chem. Phys. 2023, 23, (10), 5699-5713..

 

[4] Zhai, M.; Kuang, Y.*(通讯); Liu, L.*; He, Y.; Luo, B.; Xu, W.; Tao, J.; Zou, Y.; Li, F.; Yin, C.; Li, C.; Xu, H.; Deng, X., Insights into characteristics and formation mechanisms of secondary organic aerosols in the Guangzhou urban area. Atmos. Chem. Phys. 2023, 23, (9), 5119-5133.

 

[5] Wang, Y.; Liu, J.; Jiang, F.; Chen, Z.; Wu, L.; Zhou, S.; Pei, C.; Kuang, Y.; Cao, F.; Zhang, Y.; Fan, M.; Zheng, J.; Li, J.; Zhang, G., Vertical measurements of stable nitrogen and oxygen isotope composition of fine particulate nitrate aerosol in Guangzhou city: Source apportionment and oxidation pathway. Science of The Total Environment 2023, 865, 161239.

 

[6] Tao, J.; Kuang, Y*(通讯).; Luo, B.; Liu, L.*; Xu, H.; Ma, N.; Liu, P.; Xue, B.; Zhai, M.; Xu, W.; Xu, W.; Sun, Y., Kinetic Limitations Affect Cloud Condensation Nuclei Activity Measurements Under Low Supersaturation. Geophysical Research Letters 2023, 50, (4), e2022GL101603.

 

2022

[1] Luo, B.; Kuang, Y.*(通讯); Huang, S*.; Song, Q.; Hu, W.; Li, W.; Peng, Y.; Chen, D.; Yue, D.; Yuan, B.; Shao, M., Parameterizations of size distribution and refractive index of biomass burning organic aerosol with black carbon content. Atmos. Chem. Phys. 2022, 22, (18), 12401-12415.

 

[2] Yang, Z.; Ma, N.; Wang, Q.; Li, G.; Pan, X.; Dong, W.; Zhu, S.; Zhang, S.; Gao, W.; He, Y.; Xie, L.; Zhang, Y.; Kuhn, U.; Xu, W.; Kuang, Y.; Tao, J.; Hong, J.; Zhou, G.; Sun, Y.; Su, H.; Cheng, Y., Characteristics and source apportionment of black carbon aerosol in the North China Plain. Atmospheric Research 2022, 276, 106246.

 

[3]Liang, M.; Tao, J.; Ma, N.; Kuang, Y.; Zhang, Y.; Wu, S.; Jiang, X.; He, Y.; Chen, C.; Yang, W.; Zhou, Y.; Cheng, P.; Xu, W.; Hong, J.; Wang, Q.; Zhao, C.; Zhou, G.; Sun, Y.; Zhang, Q.; Su, H.; Cheng, Y., Prediction of CCN spectra parameters in the North China Plain using a random forest model. Atmospheric Environment 2022, 289, 119323.

 

[4] Liu, L., Kuang, Y.*(通讯), Zhai, M., Xue, B., He, Y., Tao, J., Luo, B., Xu, W., Tao, J., Yin, C., Li, F., Xu, H., Deng, T., Deng, X., Tan, H., and Shao, M.: Strong light scattering of highly oxygenated organic aerosols impacts significantly on visibility degradation, Atmos. Chem. Phys., 22, 7713-7726, 10.5194/acp-22-7713-2022, 2022.

 

[5] Xue, B., Kuang, Y.(通讯), Xu, W., and Zhao, P*.: Joint increase of aerosol scattering efficiency and aerosol hygroscopicity aggravate visibility impairment in the North China Plain, Science of The Total Environment, 839, 156279, https://doi.org/10.1016/j.scitotenv.2022.156279, 2022.

 

[6] Zhao, P.#*, Ge, S#., Su, J., Ding, J., and Kuang, Y.*(通讯): Relative Humidity Dependence of Hygroscopicity Parameter of Ambient Aerosols, Journal of Geophysical Research: Atmospheres, 127, e2021JD035647, https://doi.org/10.1029/2021JD035647, 2022.

 

[7] Wu, S., Tao, J., Ma, N., Kuang, Y., Zhang, Y., He, Y., Sun, Y., Xu, W., Hong, J., Xie, L., Wang, Q., Su, H., and Cheng, Y.: Particle number size distribution of PM1 and PM10 in fogs and implications on fog droplet evolutions, Atmospheric Environment, 277, 119086, https://doi.org/10.1016/j.atmosenv.2022.119086, 2022.

 

 

2021

[1]Kuang, Y., Huang, S., Xue, B., Luo, B., Song, Q., Chen, W., Hu, W., Li, W., Zhao, P., Cai, M., Peng, Y., Qi, J., Li, T., Wang, S., Chen, D., Yue, D., Yuan, B., and Shao, M.: Contrasting effects of secondary organic aerosol formations on organic aerosol hygroscopicity, Atmos. Chem. Phys., 21, 10375-10391, 10.5194/acp-21-10375-2021, 2021.

 

[2] Jiang, X., Tao, J., Kuang, Y., Hong, J., and Ma, N.: Mathematical derivation and physical interpretation of particle size-resolved activation ratio based on particle hygroscopicity distribution: Application on global characterization of CCN activity, Atmospheric Environment, 246, 118137, https://doi.org/10.1016/j.atmosenv.2020.118137, 2021.

 

[3] Tao, J., Kuang, Y., Ma, N., Hong, J., Sun, Y., Xu, W., Zhang, Y., He, Y., Luo, Q., Xie, L., Su, H., and Cheng, Y.: Secondary aerosol formation alters CCN activity in the North China Plain, Atmos. Chem. Phys., 21, 7409-7427, 10.5194/acp-21-7409-2021, 2021.

 

[4] Xu, W., Zhang, G., Wang, Y., Tong, S., Zhang, W., Ma, Z., Lin, W., Kuang, Y., Yin, L., and Xu, X.: Aerosol Promotes Peroxyacetyl Nitrate Formation During Winter in the North China Plain, Environmental science & technology, 55, 3568-3581, 10.1021/acs.est.0c08157, 2021.

 

[5] Li, G., Su, H., Ma, N., Tao, J., Kuang, Y., Wang, Q., Hong, J., Zhang, Y., Kuhn, U., Zhang, S., Pan, X., Lu, N., Tang, M., Zheng, G., Wang, Z., Gao, Y., Cheng, P., Xu, W., Zhou, G., Zhao, C., Yuan, B., Shao, M., Ding, A., Zhang, Q., Fu, P., Sun, Y., Pöschl, U., and Cheng, Y.: Multiphase chemistry experiment in Fogs and Aerosols in the North China Plain (McFAN): integrated analysis and intensive winter campaign 2018, Faraday Discussions, 226, 207-222, 10.1039/D0FD00099J, 2021.

 

[6] Wang, W., Li, X., Kuang, Y., Su, H., Cheng, Y., Hu, M., Zeng, L., Tan, T., and Zhang, Y.: Exploring the Drivers and Photochemical Impact of the Positive Correlation between Single Scattering Albedo and Aerosol Optical Depth in the Troposphere, Environmental Science & Technology Letters, 8, 504-510, 10.1021/acs.estlett.1c00300, 2021.

 

[7] Shao, M., Wang, W., Yuan, B., Parrish, D. D., Li, X., Lu, K., Wu, L., Wang, X., Mo, Z., Yang, S., Peng, Y., Kuang, Y., Chen, W., Hu, M., Zeng, L., Su, H., Cheng, Y., Zheng, J., and Zhang, Y.: Quantifying the role of PM2.5 dropping in variations of ground-level ozone: Inter-comparison between Beijing and Los Angeles, Science of The Total Environment, 788, 147712, https://doi.org/10.1016/j.scitotenv.2021.147712, 2021.

 

2020:

[1]Xu, W., Kuang, Y.(通讯), Liang, L., He, Y., Cheng, H., Bian, Y., Tao, J., Zhang, G., Zhao, P., Ma, N., Zhao, H., Zhou, G., Su, H., Cheng, Y., Xu, X., Shao, M., and Sun, Y.: Dust-Dominated Coarse Particles as a Medium for Rapid Secondary Organic and Inorganic Aerosol Formation in Highly Polluted Air, Environmental science & technology, 10.1021/acs.est.0c07243, 2020.

[2]Kuang, Y., Xu, W., Tao, J., Ma, N., Zhao, C., and Shao, M.: A Review on Laboratory Studies and Field Measurements of Atmospheric Organic Aerosol Hygroscopicity and Its Parameterization Based on Oxidation Levels, Current Pollution Reports, 10.1007/s40726-020-00164-2, 2020.

 

[3] Xu, W., Kuang, Y. (通讯), Bian, Y., Liu, L., Li, F., Wang, Y., Xue, B., Luo, B., Huang, S., Yuan, B., Zhao, P., and Shao, M.: Current Challenges in Visibility Improvement in Southern China, Environmental Science & Technology Letters, 10.1021/acs.estlett.0c00274, 2020.

[4] Tao, J., Kuang, Y., Ma, N., Zheng, Y., Wiedensohler, A., and Zhao, C.: An improved parameterization scheme for size-resolved particle activation ratio and its application on comparison study of particle hygroscopicity measurements between HTDMA and DMA-CCNC, Atmospheric Environment, 226, 117403, https://doi.org/10.1016/j.atmosenv.2020.117403, 2020.

[5] Kuang, Y.; He, Y.; Xu, W*.; Yuan, B.; Zhang, G.; Ma, Z.; Wu, C.; Wang, C.; Wang, S.; Zhang, S.; Tao, J.; Ma, N.; Su, H.; Cheng, Y.; Shao, M.; Sun, Y*., Photochemical Aqueous-Phase Reactions Induce Rapid Daytime Formation of Oxygenated Organic Aerosol on the North China Plain. Environmental science & technology 2020.

[6] Kuang, Y*.; He, Y.; Xu, W.; Zhao, P.; Cheng, Y.; Zhao, G.; Tao, J.; Ma, N.; Su, H.; Zhang, Y.; Sun, J.; Cheng, P.; Yang, W.; Zhang, S.; Wu, C.; Sun, Y*.; Zhao, C., Distinct diurnal variation in organic aerosol hygroscopicity and its relationship with oxygenated organic aerosol. Atmos. Chem. Phys. 2020, 20, (2), 865-880

[7]Kuang, Y.; Xu, W.*; Lin, W.; Meng, Z.; Zhao, H.; Ren, S.; Zhang, G.; Liang, L.; Xu, X., Explosive morning growth phenomena of NH3 on the North China Plain: Causes and potential impacts on aerosol formation. Environmental Pollution 2020, 257, 113621.

[8] Sun, Y.; He, Y.; Kuang, Y.; Xu, W.; Song, S.; Ma, N.; Tao, J.; Cheng, P.; Wu, C.; Su, H.; Cheng, Y.; Xie, C.; Chen, C.; Lei, L.; Qiu, Y.; Fu, P.; Croteau, P.; Worsnop, D. R., Chemical Differences Between PM1 and PM2.5 in Highly Polluted Environment and Implications in Air Pollution Studies. Geophysical Research Letters 2020, 47, (5), e2019GL086288.

[9] Zhang, Y.; Tao, J.; Ma, N.; Kuang, Y.; Wang, Z.; Cheng, P.; Xu, W.; Yang, W.; Zhang, S.; Xiong, C.; Dong, W.; Xie, L.; Sun, Y.; Fu, P.; Zhou, G.; Cheng, Y.; Su, H., Predicting cloud condensation nuclei number concentration based on conventional measurements of aerosol properties in the North China Plain. The Science of the total environment 2020, 719, 137473.

[10] Bian, Y.; Xu, W.; Hu, Y.; Tao, J.; Kuang, Y.; Zhao, C., Method to retrieve aerosol extinction profiles and aerosol scattering phase functions with a modified CCD laser atmospheric detection system. Optics Express 2020, 28, (5), 6631.

 

2019:

[1] Xu, W., Kuang, Y.*(通讯), Zhao, C., Tao, J., Zhao, G., Bian, Y., Yang, W., Yu, Y., Shen, C., Liang, L., Zhang, G., Lin, W., and Xu, X.: NH3-promoted hydrolysis of NO2 induces explosive growth in HONO, Atmos. Chem. Phys., 19, 10557-10570, 10.5194/acp-19-10557-2019, 2019.

[2] Kuang, Y., Tao, J., Xu, W., Yu, Y., Zhao, G., Shen, C., Bian, Y., and Zhao, C.: Calculating ambient aerosol surface area concentrations using aerosol light scattering enhancement measurements, Atmospheric Environment, 216, 116919, https://doi.org/10.1016/j.atmosenv.2019.116919, 2019.

[3] Zhao, C., Yu, Y., Kuang, Y., Tao, J., and Zhao, G.: Recent Progress of Aerosol Light-scattering Enhancement Factor Studies in China, Advances in Atmospheric Sciences, 36, 1015-1026, 10.1007/s00376-019-8248-1, 2019.

[4]Zhao, G.; Tao, J.; Kuang, Y.; Shen, C.; Yu, Y.; Zhao, C., Role of black carbon mass size distribution in the direct aerosol radiative forcing. Atmos. Chem. Phys. 2019, 19, (20), 13175-13188.

2018:

[1]Yu, Y., Zhao, C., Kuang, Y., Tao, J., Zhao, G., Shen, C., and Xu, W.: A parameterization for the light scattering enhancement factor with aerosol chemical compositions, Atmospheric Environment, https://doi.org/10.1016/j.atmosenv.2018.08.016, 2018.

[2] Shen, C., Zhao, C., Ma, N., Tao, J., Zhao, G., Yu, Y., and Kuang, Y.: Method to Estimate Water Vapor Supersaturation in the Ambient Activation Process Using Aerosol and Droplet Measurement Data, Journal of Geophysical Research: Atmospheres, 0, 10.1029/2018JD028315, 2018.

[3] Zhao, G., Zhao, C., Kuang, Y., Bian, Y., Tao, J., Shen, C., and Yu, Y.: Calculating the aerosol asymmetry factor based on measurements from the humidified nephelometer system, Atmos. Chem. Phys., 18, 9049-9060, 10.5194/acp-18-9049-2018, 2018.

[4] Kuang, Y., Zhao, C. S., Zhao, G., Tao, J. C., Xu, W., Ma, N., and Bian, Y. X.: A novel method for calculating ambient aerosol liquid water content based on measurements of a humidified nephelometer system, Atmospheric Measurement Techniques, 11, 2967-2982, 10.5194/amt-11-2967-2018, 2018.

[5] Bian, Y., Zhao, C., Xu, W., Kuang, Y., Tao, J., Wei, W., Ma, N., Zhao, G., Lian, S., Tan, W., and Barnes, J. E.: A novel method to retrieve the nocturnal boundary layer structure based on CCD laser aerosol detection system measurements, Remote Sensing of Environment, 211, 38-47, https://doi.org/10.1016/j.rse.2018.04.007, 2018.

[6] Tao, J., Zhao, C., Kuang, Y., Zhao, G., Shen, C., Yu, Y., Bian, Y., and Xu, W.: A new method for calculating number concentrations of cloud condensation nuclei based on measurements of a three-wavelength humidified nephelometer system, Atmos. Meas. Tech., 11, 895-906, 10.5194/amt-11-895-2018, 2018.

2017

[1] Tao, J., Zhao, C., Ma, N., Kuang, Y., Consistency and applicability of parameterization schemes for the size-resolved aerosol activation ratio based on field measurements in the North China Plain, In Atmospheric Environment, Volume 173, 2018, Pages 316-324, ISSN 1352-2310, https://doi.org/10.1016/ j.atmosenv.2017.11.021.

[2] Yuxuan Bian, Chunsheng Zhao, Wanyun Xu, Nan Ma, Jiangchuan Tao, Ye Kuang, Gang Zhao, and Hongjian Liu, Method to retrieve the nocturnal aerosol optical depth with a CCD laser aerosol detective system, Opt. Lett. 42, 4607-4610, 2017.

[3] Bian, Y., Zhao, C., Xu, W., Zhao, G., Tao, J., and Kuang, Y.: Development and validation of a CCD-laser aerosol detective system for measuring the ambient aerosol phase function, Atmos. Meas. Tech., 10, 2313-2322, https://doi.org/10.5194/ amt-10-2313-2017, 2017.

[4] Zhao, G., Zhao, C., Kuang, Y., Tao, J., Tan, W., Bian, Y., Li, J., and Li, C.: Impact of aerosol hygroscopic growth on retrieving aerosol extinction coefficient profiles from elastic-backscatter lidar signals, Atmos.Chem. Phys., 17, 12133-12143, https://doi.org/10.5194/acp-17-12133-2017, 2017.

[5] Kuang, Y., Zhao, C., Tao, J., Bian, Y., Ma, N., and Zhao, G.: A novel method for deriving the aerosol hygroscopicity parameter based only on measurements from a humidified nephelometer system, Atmos. Chem. Phys., 17, 6651-6662, 10.5194/ acp-17-6651-2017, 2017.

2016

[1] Kuang, Y., Zhao, C. S., Tao, J. C., Bian, Y. X., and Ma, N.: Impact of aerosol hygroscopic growth on the direct aerosol radiative effect in summer on North China Plain, Atmospheric Environment, 147, 224-233, http://dx.doi.org/10.1016/j.atmosenv. 2016.10.013, 2016.

[2] Kuang, Y., Zhao, C. S., Ma, N., Liu, H. J., Bian, Y. X., Tao, J. C., and Hu, M.: Deliquescent phenomena of ambient aerosols on the North China Plain, Geophys. Res. Lett., 8744-8750, 10.1002/2016GL070273, 2016.

[3] Ma, N., Zhao, C., Tao, J., Wu, Z., Kecorius, S., Wang, Z., Größ, J., Liu, H., Bian, Y., Kuang, Y., Teich, M., Spindler, G., Müller, K., van Pinxteren, D., Herrmann, H., Hu, M., and Wiedensohler, A.: Variation of CCN activity during new particle formation events in the North China Plain, Atmos. Chem. Phys., 16, 8593-8607, 10.5194/acp-16-8593-2016, 2016.

2015

[1] Kuang, Y., Zhao, C.S., Tao, J.C., Ma, N., 2015. Diurnal variations of aerosol optical properties in the North China Plain and their influences on the estimates of direct aerosol radiative effect. Atmos. Chem. Phys. 15, 5761-5772.

2014

[1] Yan, Y. Y., Lin, J. T., Kuang, Y., Yang, D., and Zhang, L.: Tropospheric carbon monoxide over the Pacific during HIPPO: two-way coupled simulation of GEOS-Chem and its multiple nested models, Atmos. Chem. Phys., 14, 12649-12663, 10.5194/acp-14-12649-2014, 2014.

专利:

赵春生,旷烨,刘宏剑,赵罡,一种气溶胶散射吸湿增长因子的测量系统,专利号:ZL201620467260.4

 


科研项目



1国家自然科学基金面上项目,项目名称《基于挥发性和氧化程度的有机气溶胶吸湿性参数化研究》,58万,执行期限:2022-2025年,项目负责人。

 

2. 暨南大学科协青年人才托举项目第一层次,202320万。

 

3. 国家自然科学基金青年科学基金项目,项目名称《环境气溶胶相态变化特征及其大气环境效应研究》,项目批准号4180510926万,执行期限:2019-2021年,项目负责人。

 

4. 环保部大气重污染成因与治理攻关项目《京津冀及周边地区大气重污染的成因和来源》课题三《秋冬季大气重污染化学过程机理研究》第三子课题《重污染过程中多相化学反应动力学及机理研究》参与单位暨南大学方面负责人,暨南大学到账90.72万。



研究团队




English