俞鹏飞,教授,博导。主要研究方向为平流层气溶胶和数值模式的开发应用。入选海外高层次人才引进计划。曾获得美国科罗拉多州州长高影响力论文奖,科罗拉多大学杰出论文奖等。被<Science>,<Nature>, <National Science Review>等数十个杂志邀请审稿。
工作经历:
2019.05- 暨南大学环境与气候研究院 教授
2015.09-2019.05 美国国家海洋与大气管理局(NOAA)博士后
教育背景:
2015.8 博士,大气科学,科罗拉多大学博尔德分校
毕业论文:A Sectional Aerosol Model: with Applications from the ground to the lower stratosphere.
2010.8 学士,环境科学,暨南大学
毕业论文:Precipitation simulation for Queensland, Australia using autoregressive moving average method
研究内容:平流层-对流层交换,平流层化学,气候数值模式开发
20181.03 国家海外高层次人才引进计划
2019.11 美国科罗拉多州州长高影响力论文奖
2019.11 美国宇航局集体成就奖(ATom)
2019.05 美国科罗拉多大学杰出论文奖
2018.08 福布斯中国杂志:2018年科学与技术30位30岁以下精英榜单(“30 under 30”)
2016.07 美国宇航局集体成就奖(ATTREX)
2015.02 美国宇航局集体成就奖(SEAC4RS)
代表性研究成果
一、 平流层气溶胶的传输机制
机制1:野火“自抬升”机制的发现
-Yu* et al. (2019), Science, 365 (6453), 587-590.
-Katich*, Yu et al. (2022), Science, doi: 10.1126/science.add3101
通过研究2017年加拿大的野火的“自抬升”这一自然现象,发现了其机制是烟尘中的黑碳气溶胶可以有效加热空气从而将其传输烟尘到平流层中。
机制2:亚洲季风的“烟囱”效应与对流层-平流层交换
-Yu* et al. (2015), Geophys. Res. Lett., doi: 10.1002/2015GL063181.
-Yu, Bian* et al. (2017), Proc. Natl. Acad. Sci., doi:10.1073/pnas.1701170114.
首次提出亚洲对流层上层和平流层下层含有大量的有机物气溶胶。该研究结论被欧洲大型航测所证实。提出亚洲地区的污染物如何通过亚洲夏季季风的“烟囱效应”输送扩散到全球的传输机制。
二、 平流层气溶胶的气候效应
气候效应1:野火损耗平流层臭氧(发现野火颗粒的非均相化学机理)
-Yu* et al., (2021), Geophys. Res. Lett,doi: 10.1029/2021GL092609 (WILEY GRL高被引论文奖,Nature报道)
-Solomon*, Yu et al. (2022), Proc. Natl. Acad. Sci, doi: 10.1073/pnas.2117325119
-Solomon*, Yu et al., (2023), Nature, doi: 10.1038/s41586-022-05683-0
提出假说:烟尘中的有机物气溶胶通过非均相化学反应可以造成臭氧损耗。
验证假说:美国科学院院士Susan Solomon教授使用我开发的气溶胶模式,对2019-2020澳洲山火进一步展开研究。结合数值模式和卫星观测,研究表明烟尘气溶胶表面发生了非均相化学反应,进一步提出包括N2O5的水解和ClONO2+HCl释放活性氯的化学机制。
气候效应2:野火的辐射效应(提出平流层快速反馈机制)
-Yu* et al., (2023), Geophys. Res. Lett, doi: 10.1029/2023GL103791
-Yu* et al., (2021), Geophys. Res. Lett, doi: 10.1029/2021GL092609
-Liu, Yu* et al. (2022), Geophys. Res. Lett, https://doi. org/10.1029/2022GL100175
2019-2020年澳洲的野火烟尘,发现了含碳气溶胶可以通过有效加热平流层导致平流层大气的长波辐射异常,进而增强气溶胶的全球辐射。发现平流层野火气溶胶对地球的辐射冷却效应是硫酸盐的1.6倍。发现近二十年,火山和野火导致的平流层气溶胶异常抵消了同期CO2温室效应的20%。
气候效应3: 人为源和天然源平流层气溶胶的辐射-化学-动力耦合机制
-Yu* et al. (2016), Geophys. Res. Lett., doi:10.1002/2016GL070153.
-Peng, Yu* et al. (2023), Geophys. Res. Lett., https://doi. org/10.1029/2023GL103773.
-Liu, Yu* et al. (2022), Geophys. Res. Lett, https://doi. org/10.1029/2022GL100175
-Yu* et al., (2023), Geophys. Res. Lett, doi: 10.1029/2023GL103791
量化研究火山,野火,以及人为源气溶胶在平流层通过辐射-化学-动力耦合系统影响平流层臭氧和大气经向环流的影响机制。
气候效应4:野火“自抬升”机制应用在太阳辐射管理
-Gao, Yu* et al. (2021), Science Advances, https://doi. org/10.1029/2021GL092609
基于2017年加拿大山火和2019年澳洲山火的启发,首次在学界创新性探讨并提出了往平流层中注入SO2的可行性机制方案,大幅降低平流层太阳反照率实验的实施成本和技术瓶颈。
三、 开发适合研究平流层化学的分档气溶胶-气候数值模式(CARMA)
模式框架建立
Yu* et al. (2015), J. Adv. Model. Earth Syst., doi:10.1002/2014MS000421.
分档气溶胶-气候数值CARMA模式的开发和框架建立。该模式一直在被不断完善改进中,现被美国大气研究中心和美国海洋大气管理局等科研单位使用。
对流参数化方案修正
Yu* et al. (2019), Geophys. Res. Lett., https://doi.org/10.1029/2018GL080544
改进了CARMA模式里对流输送的参数化方案,改进了云底上的二次核化过程,该方案被多个研究组采用,是GRL杂志2019年度阅读量最大的文章之一。
扩展模拟物种范围
Yu* et al. (2022), Geophys. Res. Lett., doi: 10.1029/2022GL100258.
在CARMA模式里增加了适合于全大气层(平流层和对流层)的硝酸盐和铵盐的分档气溶胶模块,使用自适应时间分步长积分欧拉方案等措施,有效降低了H2SO4-NH3-HNO3气粒二相微分方程组的刚性问题。
已发表论文列表
Professor at Jinan University (2019-)
1. Tilmes, S. et al. (2023), Description and performance of the CARMA sectional aerosol microphysical model in CESM2, Geosci. Model Dev., accepted.
2. Shan, Y., Liu, X., Lin, L., Ke, Z., Lu, Z., Tilmes, S., et al. (2023). The role of in-cloud wet removal in simulating aerosol vertical profiles and cloud radiative forcing. Journal of Geophysical Research: Atmospheres, 128, e2023JD038564. https://doi.org/10.1029/2023JD038564
3. Yu, P.*, R. W. Portmann, Y. Peng, C. Liu, Y. Zhu, E. Asher, M. Mills, A. Schmidt, K. H. Rosenlof and O. B. Toon (2023), Radiative Forcing from the Volcanic and Wildfire Injections between 2014 and 2022, Geophys. Res. Lett., doi: 10.1029/2023GL103791.
4. Peng, Y., P. Yu*, R.W. Portmann et al. (2023), Perturbation of Tropical Stratospheric Ozone through Homogeneous and Heterogeneous Chemistry due to Pinatubo,Geophys. Res. Lett., 50, e2023GL103773. https://doi. org/10.1029/2023GL103773.
5. Solomon, S., K. Stone, P. Yu, D. M. Murphy, D. Kinnison and A. R. Ravishankara (2023), Chemical impacts of wildfire smoke on stratospheric chlorine and ozone depletion, Nature, 615, doi:10.1038/s41586-022-05683-0.
6. World Meteorological Organization (WMO). Executive Summary. Scientific Assessment of Ozone Depletion: 2022, GAW Report No. 278, 56 pp.; WMO: Geneva, 2022. (Author of Chapter 5).
7. Chen, W., Jia, S., Shao, M., Liao, W., Guenther, A., Flechard, C., Yu, P., Zhong, B., Chang, M., Wang, W., Mao, J., Liu, X., Yu, G. and Camichael, G. (2022), Precipitation trend increases the contribution of dry reduced nitrogen deposition, npj Climate and Atmospheric Science, accepted.
8. Yu, P.*, O. B. Toon, C. G. Bardeen, Y. Zhu, K. H. Rosenolf, R. W. Portmann, T. D. Thornberry, R. S. Gao, S. M. Davis, E. T. Wolf, J. de Gouw, D. A. Peterson, M. D. Fromm and A. Robock (2019), Black carbon lofts wildfire smoke high into the stratosphere to form a persistent plume, Science, 365 (6453), 587-590.
9. Yu, P.*, S. Lian, Y. Zhu, O.B. Toon, M. Hopfner and S. Borrmann (2022), Abundant nitrate and nitric acid aerosol in the global upper troposphere and lower stratosphere, Geophys. Res. Lett.,49, e2022GL100258, doi: 10.1029/2022GL100258.
10. Yu, P.*, S. M. Davis, O. B. Toon, R. W. Portmann, C. G. Bardeen, J. E. Barnes, H. Telg, C. Maloney and K. H. Rosenlof (2021), Persistent stratospheric warming due to 2019-20 Australian wildfire, Geophys. Res. Lett., 48, e2021GL092609, doi: 10.1029/2021GL092609.
11. Katich, J.M., Schwarz, J.P., E. Apel, I. Boureois, T. P. Bui, P. Campuzano-Jost, R. Commane, B. Daube, M. Dollner, M. Fromm, K.D. Froyd, A. Hills, R. Hornbrook, J. Jimenez, A. Kupc, K. Lamb, D.M. Murphy, B.A. Nault, J. Peischl, D. Peterson, T. Ryerson, G.P. Schill, J.C. Schroder, B. Weinzierl, C. Thompson, C. Williamson, P. Yu and Steve Wofsy (2023), Pyrocumulonimbus affect average stratospheric aerosol composition, Science, 379(6634), 815-820, doi:10.1126/science.add3101.
12. Gao, R.S., K.H. Rosenlof*, B. Karcher, S. Tilmes, O.B. Toon, C. Maloney and P. Yu* (2021), Toward Practical Stratospheric Aerosol Albedo Modification - Black Carbon Assisted Lofting, Science Advances, 7, 20, https://doi. org/10.1029/2021GL092609.
13. Solomon, S.*, K. Dube, K. Stone, P. Yu, D. Kinnison, O.B. Toon, S.E. Strahan, K.H. Rosenlof, R. Portmann, S. Davis, W. Randel, P. Bernath, C. Boone, C.G. Bardeen, A. Bourassa, D. Zawada and D. Degensteinb (2022), On the stratospheric chemistry of mid-latitude wildfire smoke, Proc. Natl. Acad. Sci,119(10), e2117325119,doi: 10.1073/pnas.2117325119
14. Froyd, K.D.*, P. Yu, G. Schill, C.A. Brock, A. Kupc, C.A. Williamson, E.J. Jensen, E. Ray, K.H. Rosenlof, H. Bian, A.S. Darmenov, P.R. Colarco, G.S. Diskin, T. Bui and D.M. Murphy (2022), Global-scale measurements reveal cirrus clouds are seeded by mineral dust aerosol, Nat. Geosci.,https://doi.org/10.1038/s41561-022-00901-w.
15. Lian, S., L., Zhou, K. D. Froyd, D. M. Murphy, O. B. Toon and P. Yu* (2022), Global Distribution of Asian, Middle Eastern, and North African Dust Simulated by CESM1/CARMA, Atmos. Chem. Phys., 22, 13659–13676.
16. Zhu, Y.*, C. Bardeen, S. Tilmes, M. Mills, V. L. Harvey, G. Taha, D. Kinnison, P. Yu, K. Rosenlof, X. Wang, M. Avery, C. Kloss, C. Li, S. Glanville, L. Millán, T. Deshler, R. Portmann, N. Krotkov and O. B. Toon (2022), Perturbations in stratospheric aerosol evolution due to the water-rich plume of the 2022 Hunga-Tonga eruption, Commun. Earth Environ.,3(248), https://doi.org/10.1038/s43247-022-00580-w.
17. Liu, C., R.W. Portmann, Liu, S*, K.H. Rosenlof, Y. Peng and P. Yu* (2022), Significant radiative forcing of pyrocb smoke in the stratosphere, Geophys. Res. Lett., 49, e2022GL100175. https://doi. org/10.1029/2022GL100175.
18. Chen, S., W. Wang, M. Li, J. Mao, N. Ma, J. Liu, Z. Bai, L. Zhou, X. Wang, J. Bian* and P. Yu* (2022), The Contribution of Local Anthropogenic Emissions to Air Pollutants in Lhasa City on the Tibetan Plateau, J. Geophys. Res. Atmos.,127, e2021JD036202, https://doi.org/10.1029/2021JD036202.
19. Li, M., J. Mao, S. Chen, J. Bian, Z. Bai, X. Wang, W. Chen*, and P. Yu* (2022), Significant contribution of the lightning NOx to the summertime surface O3 at Tibetan Plateau, Sci Total Environ., 829, 154639, https://doi.org/10.1016/j.scitotenv.2022.154639.
20. Maloney, C., O.B. Toon, C. Bardeen, P. Yu, K. Froyd, J. Kay and S. Woods (2022), The balance between heterogeneous and homogeneous nucleation of thin cirrus in the upper troposphere using CAM5/CARMA, J. Geophys. Res. Atmos., 127, e2021JD035540, https://doi.org/10.1029/2021JD035540.
21. Li, Q., D. Gong, H. Wang, Y. Wang, S. Han, G. Wu, S. Deng, P. Yu, W. Wang and B. Wang (2022), Rapid increase in atmospheric glyoxal and methylglyoxal concentrations in Lhasa, Tibetan Plateau: Potential sources and implications, Sci Total Environ, 824, 153782, https://doi.org/10.1016/j.scitotenv.2022.153782.
22. Mao, J., L. Zhou, L. Wu, W. Chen, X. Wang* and P. Yu* (2021), Evaluation of Biogenic Organic Aerosols over the Amazon Rainforest Using WRF-Chem with MOSAIC, J. Geophys. Res. Atmos., 126, e2021JD034913, https://doi.org/10.1029/2021JD034913.
23. Zhu, Y.*, O. B. Toon, E. J. Jensen, C. G. Bardeen, M. J. Mills, M. A. Tolbert, P. Yu, S. Woods (2020), Persisting Volcanic Ash Particles Impact stratospheric extinction and SO2chemistry, Nat. Commun., 11, 4526, DOI: 10.1038/s41467-020-18352-5.
24. Hodzic, A.*, Campuzano-Jost, P., Bian, H., Chin, M., Colarco, P. R., Day, D. A., Froyd, K. D., Heinold, B., Jo, D. S., Katich, J. M., Kodros, J. K., Nault, B. A., Pierce, J. R., Ray, E., Schacht, J., Schill, G. P., Schroder, J. C., Schwarz, J. P., Sueper, D. T., Tegen, I., Tilmes, S., Tsigaridis, K., Yu, P., and Jimenez, J. L. (2020), Characterization of Organic Aerosol across the Global Remote Troposphere: A comparison of ATom measurements and global chemistry models,Atmos. Chem. Phys., 20, 4607–4635,https://doi.org/10.5194/acp-20-4607-2020.
25. Murphy, D.M*, K.D. Froyd, I. Bourgeois, C.A. Brock, A. Kupc, J. Peischl, G.P. Schill, C.R. Thompson, C.J. Williamson andP. Yu (2021), Radiative and chemical implications of the size of aerosol particles in the existing or modified stratosphere, Atmos. Chem. Phys., DOI: https://doi.org/10.5194/acp-2020-909.
26. Zhong, Y., H. Yu, W. Wang*, P. Yu (2023), Impacts of future urbanization and rooftop photovoltaics on the surface meteorology and energy balance of Lhasa, China, Urban Climate, 51, 101688, https://doi.org/10.1016/j.uclim.2023.101668.
27. Zhong, Y., S. Chen, P. Yu, W. Wang*, X. Wang, N. Chuduo and B. Bian (2022), Contribution of urban expansion to surface warming in high-altitude cities of the Tibetan Plateau, Climatic Change, 175, 6 (2022). https://doi.org/10.1007/s10584-022-03460-6.
Postdoc at NOAA (2015-2019)
28. Yu, P. *, K.D. Froyd, R.W. Portmann, O.B. Toon, S. R. Freitas, C. G. Bardeen, C. Brock, T. Fan, R. S. Gao, J. M. Katich, A. Kupc, S. Liu, C. Maloney, D. M. Murphy, K. H. Rosenlof, G. Schill, J. P. Schwarz and C. Williamson (2019), Efficient In-cloud Removal of Aerosols by Deep Convection, Geophys. Res. Lett., 45, 1061-1069, https://doi.org/10.1029/2018GL080544
29. Yu, P., K. H, Rosenlof, S. Liu, H. Telg, X. Bai, R.W. Portmann, A. W. Rollins, L. L. Pan, O.B. Toon, J. Bian*, and R. S. Gao (2017), Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone, Proc. Natl. Acad. Sci., 114, 27, 6972-6977, doi:10.1073/pnas.1701170114.
30. Yu, P.*, D. M. Murphy, R. W. Portmann, O. B. Toon, K. D Froyd, A. Rollins, R. S. Gao and K. H. Rosenlof (2016), Radiative Forcing from Anthropogenic Sulfur and Organic Emissions Reaching the Stratosphere, Geophys. Res. Lett., 43, doi:10.1002/2016GL070153.
31. Yu, P.*, O. B. Toon, et al. (2016), Surface diming due to Rim fires of 2013 simulated by theCommunity Earth System Model combined with a Sectional Aerosol Model, J. Geophys. Res. Atmos.121, 7079–7087, doi:10.1002/2015JD024702.
32. Williamson, C.*, A. Kupc, D. Axisa, T. Bui, P.C. Jost, M. Dollner, K. Froyd, A. Hodshire, J. Jimenez, J. K. Kodros, G. Luo, D. Murphy, B. Nault, E. Ray, B. Weinzierl, J.C. Wilson, F. Yu, P. Yu, J.R. Pierce and C.A. Brock (2019), A large source of Cloud Condensation Nuclei from New Particle Formation in the Tropical Upper Troposphere, Nature, 574, 399-403.
33. Montzka, S.*, G. Dutton, P. Yu, E. Ray, R. W. Portmann, J. S. Daniel, L. Kuijpers, B. D. Hall, D. Mondell, C. Siso, J. D. Nance, M. Rigby, A. J. Manning, L. Hu, F. Moore, B. R. Miller, and J. W. Elkins (2018), Unexpected and persistent increase in global emissions of ozone-depleting CFC-11, Nature, 557, 413–417, doi:10.1038/s41586-018-0106-2.
34. Ray, E.A.*, R.W. Portmann, P. Yu, J. Daniel, S.A. Montzka, G. Dutton, B.D. Hall, F.L. Moore and K.H. Rosenlof (2019), The Stratospheric Quasi-Biennial Oscillation Influence on Tropospheric Trace Gas Mixing Ratios, Nat. Geosci., https://doi.org/10.1038/s41561-019-0507-3.
35. Davis, N.*, S.M. Davis, R.W. Portmann, E.A. Ray, P. Yu and K.H. Rosenlof (2019), A Comprehensive Assessment of Tropical Stratospheric Upwelling in Specified Dynamics CESM1 (WACCM), Geosci. Model Dev., 13, 717-734, https://doi.org/10.5194/gmd-13-717-2020.
36. Murphy, D.M.*, K. D. Froyd, H. Bian, C. A. Brock, J. E. Dibb, J. P. DiGangi, G. Diskin, M. Dollner, A. Kupc, E. M. Scheuer, G. Schill, B. Weinzierl, C. J. Williamson, and P. Yu (2019), The distribution of sea-salt aerosol in the global troposphere, Atmos. Chem. Phys., 19, 4093-4104, https://doi.org/10.5194/acp-19-1-2019.
37. Ball, W.T.*, J. Alsing, D. J. Mortlock, J. Staehelin, J. D. Haigh, T. Peter, F. Tummon, R. Stubi, A. Stenke, J. Anderson, A. Bourassa, S. M. Davis, D. Degenstein, S. Frith, L. Froidevaux, C. Roth, V. Sofieva, R. Wang, J. Wild, P. Yu, J. R. Ziemke, and E. V. Rozanov (2017), Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery, Atmos. Chem. Phys.18, 1379-1394, https://doi.org/10.5194/acp-18-1379-2018, 2018.
38. Rollins, A.*, T. D. Thornberry, L. A. Watts, P. Yu, K.H. Rosenlof, M.J. Mills, E. Baumann, F.R. Giorgetta, T.P. Bui, M. Hopfner, K. Walker, C. Boone, P.R. Colarco, P.A. Newman, D.W. Fahey and R.S. Gao (2016) The role of sulfur dioxide in stratospheric aerosol formation evaluated by using in situ measurements in the tropical lower stratosphere, Geophys. Res. Lett, 44, doi:10.1002/2017GL072754.
39. Ji, D.*, W. Gao, J. Zhang, M. Yu, L. Zhou, , et al. (2016), Investigating the evolution of summertime secondary atmospheric pollutants in urban Beijing, Sci Total Environ, 572, 289-300.
GS at CU Boulder (2010-2015)
40. Yu, P.*, O. B. Toon, C. G. Bardeen, et al. (2015), Evaluation of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol scheme, J. Adv. Model. Earth Syst., 7, 865–914, doi:10.1002/2014MS000421.
41. Yu, P.*, O. B. Toon, R. R. Neely, B. Martinsson and C. A. M. Brenninkmeijer (2015), Composition of Asian Tropopause Aerosol Layer and North American Tropopause Aerosol Layer, Geophys. Res. Lett., 42, 2540– 2546, doi: 10.1002/2015GL063181.
42. , , , , , , and (2014), The contribution of anthropogenic SO2 emissions to the Asian tropopause aerosol layer, J. Geophys. Res. Atmos.,119, 1571–1579, doi:10.1002/2013JD020578.
43. Zheng, Y.*, N. Unger, A. Hodzic, L. Emmons, C. Knote, S. Tilmes, J.-F., Lamarque, and P. (2015), Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation, Atmos. Chem. Phys., 15, 13487-13506, doi:10.5194/acp-15-13487-2015, 2015.
1.国家重点研发计划项目(子课题),大气成分垂直结构及其气候影响,主持,国家级
2.国家自然科学基金创新群体(子课题),大气化学,主持,国家级
3.国家自然科学基金面上项目,平流层硝酸盐气溶胶的时空分布和气候效应的数值模拟研究,主持,国家级
4.国家重点研发计划子课题,第二次青藏高原综合科学考察研究,主持,国家级
5.国家自然科学基金青年科学基金项目,探究全球尺度下强对流对气溶胶的垂直输送效率,主持,国家级